
Privacy - Canvas Poisonning

Daussy Fabio, Mauger Samuel, Meyran Hilan

May 5, 2024

Contents
1 Introduction 1

2 Canvas Fingerprinting 1

3 Canvas Defender 2
3.1 Overriding toDataUrl . 2

4 Our first approach to a countermeasure 2
4.1 Environment . 2
4.2 Gathering Canvas Fingerprint . 2
4.3 Leak noise . 3
4.4 Canvas Fingerprint Sanitization . 4
4.5 Measurement . 4
4.6 Why can’t we get the original fingerprint . 4

5 The winning countermeasure 4
5.1 Implementation details . 5
5.2 Potential mitigations . 5

6 Conclusion 5

Abstract

The following document is not the final report of our project but is useful to have a preview
of what we prepared during these three weeks.

1 Introduction
For this project, we read the FP-Scanner paper [VLRR18] and focused on the Canvas fingerprinting
part. Our objectives are to understand how we can detect the usage of Canvas Defender, a web
browser extension used to protect Canvas fingerprint gathering. Then, once the plug-in is detected,
try to erase the noise generated by Canvas Defender to have the sanitized and thus, the original
Canvas fingerprint of the user.

2 Canvas Fingerprinting
Definition 1. The browser fingerprinting, refers to the unique identification of a web browser
based on various attributes. This information can be collected by websites to track users and create
a unique identifier for their browser. With all the information collected. The probability of two
different users to have the same fingerprints is very low. So these are used as unique identifier.

Definition 2. The Canvas fingerprint is very useful to identify users. This type of fingerprint
is based on the computer architecture of the user, client of the website. The server make the user
compute in a Canvas some geometrical forms. When the user compute this, it uses his CPU and
his GPU and depending of them, the generated canvas is a little bit different. This result can be
use as a fingerprint.

1

Figure 1: canvas defender functioning

Figure 2: Canvas Image

3 Canvas Defender
Canvas defender is an extension designed to add noise the canvas fingerprinter it does this by inter-
fering with the fingerprinting itself. The newly generated fingerprint is persistent across sessions
(though you can change this behavior). An overview of the functioning can be seen in Figure 1.

Definition 3. toDataUrl is JavaScript function that generates URL-safe data from an image
(like a canvas), it is encoded in base64 to be easily transferred over HTTP.

The paper [VLRR18] give a first approach as to how canvas defender implements what it does.
To protect a fingerprint, Canvas Defender overwrites a Canvas object method to instead:

3.1 Overriding toDataUrl
Inside Canvas Defender source code, we can see that they override two core Javascript functions
toDataUrl and toBlob (though we will only focus on toDataUrl here), they override those ones
specifically because they are the only functions natively (available on all navigator’s engines) ca-
pable of converting an image to base64 data.

4 Our first approach to a countermeasure

4.1 Environment
The countermeasure attack target canvas defender running on Firefox browser. To execute our
test we must host a webserver permitting to the Canvas Defender addon to works, we choose to
bind a simple python HTTP server serving a simple html5 page, and a JS script.

4.2 Gathering Canvas Fingerprint
When the user connects to our Python3 server. The index.html page shown executes JavaScript
code on the client side displaying a canvas like in figure 2.

The code executed to compute a Canvas object writes some text and rectangle like the studied
paper [VLRR18]

2

1 var canvas = document.getElementById(’draw’);
2 var ctx = canvas.getContext(’2d’);
3 canvas.width = 200;
4 canvas.height = 50;
5 ctx.textBaseline = "alphabetic";
6 ctx.fillStyle = "#f60";
7 ctx.fillRect (125, 1, 62, 20);
8 ctx.fillStyle = "#069";
9 ctx.font = "16pt Arial";

10 ctx.fillText("vgcezknnczhq cezbchezak", 2, 20);

Listing 1: Canvas generator

The above code produced the followed canvas (2). Then we send the produced image to the
server exporting it with the toDataurl function to be treated on the server. On the server side, we
use the python PIL library to analyse the image.

4.3 Leak noise
By searching in the source code on the Canvas Defender github1, we found out the function that
generated the noise. Actually, the repository is not up to date, but it was quite interesting to
analyse it and make some correlation with the paper [VLRR18].

1 function generateNewFingerPrint () {
2 return new Promise ((success , fail)=>{
3 data = {};
4 data.r = HashLength - randomIntFromInterval (0, HashLength + 10);
5 data.g = HashLength - randomIntFromInterval (0, HashLength + 10);
6 data.b = HashLength - randomIntFromInterval (0, HashLength + 10);
7 data.a = HashLength - randomIntFromInterval (0, HashLength + 10);
8 const jsonData = JSON.stringify(data);
9 g_latestUpdate = Date.now();

10 storageSet ({"data": jsonData , "latestUpdate": g_latestUpdate}, ()=>{
11 success(md5(jsonData).substring(0, HashLength));
12 });
13 })
14

15 }

Listing 2: Canvas Defender function Adding Noise

The paper showed code to add on the server side index.html to detect when the toDataURL
method is overwritten, and moreover, detect the noise generated.

1 var o = new MutationObserver ((ms) => {
2 ms.forEach ((m) => {
3 var script = "overrideDefaultMethods";
4 if (m.addedNodes [0] && m.addedNodes [0]. text) {
5 if (m.addedNodes [0]. text.indexOf(script) >
6 -1) {
7 console.log("Found noise");
8 var noise = m.addedNodes [0]. text.match
9 (/\d{1,2},\d{1,2},\d{1,2},\d{1 ,2}/)

10 [0]. split(" ,");
11 console.log(noise);
12 }
13

14 }
15 });
16 });
17 o.observe(document.documentElement , {
18 childList: true , subtree: true
19 });

Listing 3: Noise Value Detection

With this code, we create a MutationObserver that will watch for changes in the DOM and
start the associated callback to function to catch the noise added by canvas defender, if we detect
this kind of behavior then we know that canvas defender is active. With that done in our setup
once the noise is detected we send it to our upload endpoint.

1https://github.com/jomo/canvas-defender-firefox/tree/master/js

3

4.4 Canvas Fingerprint Sanitization
When receiving a noised fingerprint, We convert the image in a PIL object, and subtract each pixel
with the noise vector reveled.

1 def fingerprint_from_noised(noised: str , r: int , g: int , b: int , a: int):
2 noised = noised.split(’,’)[1]
3 noised_canvas = Image.open(BytesIO(base64.b64decode(noised)))
4 pix = noised_canvas.load()
5 for i in range(noised_canvas.size [0]):
6 for j in range(noised_canvas.size [1]):
7 pr, pg, pb, pa = pix[i,j]
8 pix[i,j] = (pr - r, pg - g, pb - b, pa - a)
9 noised_canvas.save("unnoised.png")

10 buffered = BytesIO ()
11 noised_canvas.save(buffered , format="png")
12 img_str = base64.b64encode(buffered.getvalue ())
13 return img_str

Listing 4: Canvas Sanitation Code

The first result we obtain here is that the sanitation don’t permit to obtain the raw fingerprint.

4.5 Measurement
This section describes the manners to get data and how to analyse them.

1. Obtain the original raw canvas fingerprint of the user (by using the toDataUrl), we store the
obtain image on the server.

2. On client side, activate the addon to add noise, refresh the webpage to get the new canvas
fingerprint. In this step we also send the noise by leaking it (describe in the Leak noise
section)

3. At this step, on server side, we got two images: the raw and the noised. Revert the noise by
subtracted the added noise.

4. Compare the unnoised image with the raw image

5. Redo at from the step 2 with a new noise

With this function, we can now, in theory, sanitize the noised canvas. But we don’t

4.6 Why can’t we get the original fingerprint
For now, we can gather the canvas fingerprint of a user. We can also detect when the user is
tricking us with the Canvas Defender plug-in in his browser to noise his canvas. What we want
now is to reverse the noised canvas and gather the sanitized Canvas fingerprints. For a same user,
we want our server to have the same Canvas fingerprint whether the user is using Canvas Defender
or not.

5 The winning countermeasure
After struggling quite a bit with the first method we decided to radically change methods, as
we already knew Canvas Defender overrides some default methods from the web browser mainly
toDataUrl so we went about restoring the original one.

To do so we add an idea that came from earlier tests about iframes, for our purpose an iframe
(short for "inline frame") is an HTML element that allows a web page to embed another HTML
document within it. When an iframe is loaded, it behaves like a separate web page with its own
document object model (DOM), which is independent of the parent page’s DOM. And importantly
the parent page and the embedded document can communicate with each other meaning we can
get the method from the iframe so that it can be used to replace the overridden toDataUrl in the
parent page. (3)

4

5.1 Implementation details
We first create an iframe that we don’t display to the user as to not arouse suspicions,

1 const iframe = document.createElement(’iframe ’);
2 iframe.style.display = ’none’;
3 document.body.appendChild(iframe);
4

5 const originalToDataURL = iframe.contentWindow.HTMLCanvasElement.prototype.toDataURL
;

6 const originalToBlob = iframe.contentWindow.HTMLCanvasElement.prototype.toBlob;
7

8 document.body.removeChild(iframe);
9

10 HTMLCanvasElement.prototype.toDataURL = originalToDataURL;
11 HTMLCanvasElement.prototype.toBlob = originalToBlob;

Listing 5: Restore default methods

Figure 3: Diagram of the iframe attack

5.2 Potential mitigations
To mitigate this attack, it is important to ensure that any modifications to the HTMLCanvasElement
prototype are carefully reviewed and tested to ensure that they do not introduce security vulner-
abilities. Additionally, developers can use techniques such as sandboxing and input validation to
further protect canvas elements from potential attacks.

6 Conclusion
To conclude this report, we saw that in the studied paper [VLRR18] the attack proposed to reverse
the noise of Canvas Defender is not efficient (maybe not up to date). Instead of trying to reverse
the noise. We attacks directly Canvas Defender to make it unable to execute on the canvas we
gave. This one was pretty efficient and we broke Canvas Defender.

References
[VLRR18] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. FP-

Scanner: The Privacy Implications of Browser Fingerprint Inconsistencies. In Pro-

5

ceedings of the 27th USENIX Security Symposium, Baltimore, United States, August
2018.

6

	Introduction
	Canvas Fingerprinting
	Canvas Defender
	Overriding toDataUrl

	Our first approach to a countermeasure
	Environment
	Gathering Canvas Fingerprint
	Leak noise
	Canvas Fingerprint Sanitization
	Measurement
	Why can't we get the original fingerprint

	The winning countermeasure
	Implementation details
	Potential mitigations

	Conclusion

