Research project

Cache attack

LE SAOUT Gabin - DAUSSY Fabio - AACHI Keylan - LE BIHAN Matis -

COURSAUT-DURAND Lois
M1 Cybersécurité

2024
11 . "y, ~
=\/<= g""’ers'fe € (323SCHOOL
7\ de Rennes \'
¢ Contents
1 Introduction 2
2 Necessary to understand GDS 2
2.1 WhatisaCache? . . . . . . . . . e 2
22 Flush+Reload . ... ... .. . ... e 3
23 Spectre . . ... e 6
24 Gatherinstruction . . . . . . . . L 8
3 Gather data sampling 9
3.1 Gatherinstructionleaks . . . . . . .. ... 9
32 GDSindsteps . . . . . .. e 10
3.2.1 Step (i) : Enter in speculative execution . . . . ... .. ... .. 0L 11
3.2.2 Step (ii): Gather uncacheable memory . .. ... ... ... ........ 11
3.2.3 Step (iii) & (iv): Encode transient data to cache & scan the cache . . . . . 11
4 Cache Encoding and Analysis 12
41 CacheEncoding . . . .. ... ... .. ... 12
42 Cacheanalysis . . . .. ... .. L e 14
5 Our results 15
Abstract



Research Project Cache attack

This project is about being able to re-implement a gather data sampling attack, Downfall.
It allows the attacker to steal data from another process on the same computer. For example
we can get encryption keys, passwords or locally stored personal data.

¢ 1 Introduction

The objective of this project was to reimplement the Gather Data Sampling (GDS) attack, as
introduced in the Downfall research paper, and analyze its performance and limitations.

We will first talk about the prerequisites necessary to understand the attack, namely an ex-
planation of caches, the Flush+Reload attack and the Specter vulnerability. We will then detail
the GDS attack by explaining its mechanism and the steps necessary for its execution. And
finally, we will talk about the results of the implementation, discussing the successes and chal-
lenges encountered during the project.

The main sources of information for this project were three research articles: Flush+Reload,
Specter and Downfall [4][1][2]. Additionally, there was a presentation from Daniel Moghimi’s
Black Hat talk on Downfall [3].

¢ 2 Necessary to understand GDS

M 2.1 What is a Cache?

A cache, is a small, fast memory in or next to the modern processor, it contains parts of memory
that have recently been accessed. We can see below a processor which has 3 different levels of
caches, the L1, L2 caches are small caches specific to each core, unlike L3 which is a large cache
common to all.

-

[ Core 0

Core 1

|
—\
— /)
fﬁ‘

]

g

L]

™
|

g

2

w

ir

AS "

s D
L3 Unified - 6MB

o J

Figure 1: Modern processors with three cache levels

The caches are inclusive, this indicates that information in the L1 or L2 cache will be in the
L3 cache (this is not reciprocal obviously).



Research Project Cache attack

It is this inclusiveness that will be used in our attack.

The usefulness of the cache is to save time when repeatedly accessing the same memory
address. This is explained because during a first access to a memory address (cache miss), the
processor will have to fetch the "information" from the RAM, which takes a long time, once
retrieved, it will fill the cache , which implies that the next time, it will find the "information"

directly in the cache (cache hit) and it will not have to look for the information in RAM

CPU Cache Main Memory (RAM)

array[9*4096]

array[7*4096]

Y

CPU e array[3*4096]

array[1*4096]
h ) d array[0*4096]

y

M 2.2 Flush+Reload

The first part of our research was to understand how Flush+Reload worked. We therefore cre-
ated our own attack scenario: a victim program wants to execute a function located in a shared
library, called foo. Malware uses the Flush+Reload technique to spy on the victim and find out
if the function is called.

We have 3 files, victim.c which contains a victim program which uses foo function located in
a shared library bib.c and a spy in fr.c.

The idea is simple, when the victim wants to access the foo function, the CPU will have to
fetch the part of memory from RAM because it is not yet in cache (cache miss) so it takes a
lot of time. Conversely, during the next accesses to the same part of memory (within a given
time), the CPU will find the information in the cache, which will save it a lot of time. It is this

difference in timing that we are about to exploit.

/ Start the timer \

loads the value stored at the memory address (Load)

Stop the timer

clears the specified memory address from cache
(Flush)

Qmpare the timer and a threshold (calculated befc@

Figure 2: Flush and reload steps

Here are the steps of our exploitation, first of all we launch a timer, then we load the memory



Research Project Cache attack

address that we want to monitor (whether the victim accesses it or not), then we stop the timer,
and we compare it to a threshold.

This threshold is an average between a number = of memory accesses with a cache miss and
anumber z of memory accesses with a cache hit, this makes it possible to differentiate in which
case we are, when we compare ourselves to it.

Therefore if we are below this threshold, we know that the CPU quickly finds the informa-
tion so that it found it in the cache, which implies that the information was already in the cache
because of the victim and that it used this part of memory.

On the other hand, if we are above this threshold, this implies that the CPU has found the
information in the RAM and therefore that the victim has not used the part of memory in ques-
tion.

Finally the flush instruction allows us to delete a part of memory from the cache, this is
essential, because when we check whether or not the victim accesses the part of memory, we
undeniably access it, which means that we ourselves put this part of memory in cache, then we

have to flush after each check.

function
super_secure

Attacker

Timer >= THRESHOLD
super_secure is not in the
cache

W Invisible part

RAM

Figure 3: The victim did not call super_secure() function, thus Flush and reload returns False



Research Project Cache attack

Shared Librairy

function
super_secure()

Aftacker Vicam
I Cache
Timer < THRESHOLD
super_secure is in the Invisible part
cache
RAM

Figure 4: The victim call super_secure() function, thus Flush and reload returns True

Here is the code of the attacker (the spy), the instruction rdtsc is for the timer, [fence is to
protect the order of instructions, mfence is the same thing but about the memory, clflush is the
flush instruction and the other instructions are basics.



Research Project Cache attack

int probe(char *adrs)

{
volatile unsigned long time;
asm __volatile__(
"mfence \n"
"lfence \n" // to force sequential instructions
"rdtsc \n" // saving time 1st time
"lfence \n"
"movl %keax, %hesi \n" // moving the measure in jest
"movl (%1), %lheax\n" // we load adrs (which %s in the cache or not)
"lfence \n"
"rdtsc \n" // saving the time 2nd time
"subl %%esi, %heax \n" // 2nd time - 1st
"clflush 0(%1) \n" // flushing the entry
"=a" (time)
"c"(adrs)
"%hesi", "Yhedx");
printf("time : %1d\n", time);
return time < THRESHOLD;
}

Figure 5: Attacker code executing Flush+Reload, in C.

W 2.3 Spectre

Spectre is an attack that exploits performance optimization used by modern processors. CPU
manufacturers, such as Intel, AMD, and ARM, constantly strive to increase the performance of
their processors. To achieve this, they use methods like speculative execution and out-of-order
execution. Among these techniques, out-of-order execution plays a role in certain variants of
Spectre attacks.

To explain speculative execution simply, when a program asks for memory access, the pro-
cessor can guess what data will be needed next and start getting and using that data before the
request is officially processed. If the guess is right and the anticipated data is indeed needed, the
program works well because the expected data is already there. But if the guess is wrong, the
speculatively fetched data is just ignored, and the program goes back to an earlier state to follow
the correct path. This method helps the processor stay busy, which helps improve performance.

Now, out-of-order execution is a performance optimization where the processor does not

strictly follow the order of instructions as they appear in the program. Instead, it executes in-



Research Project Cache attack

structions as soon as their input data and required resources are available. This means that
instructions later in the program can be executed before earlier ones if their data dependencies
are resolved, making better use of the CPU’s execution units and increasing performance. This
technique allows the processor to fully utilize its execution units and optimize performance, but
it can create windows where speculative instructions access sensitive data, even if the execution
of those instructions should be later reverted.

Out-of-order execution is a fundamental technique exploited in Spectre attacks. In this sce-
nario, the processor speculates and executes sensitive instructions while awaiting the resolution
of memory reads. Even if this speculation is later cancelled, the data loaded into the cache re-

mains accessible to the attacker.

datal = 0;

data2 = 0;

#Flush from the cache.

_mm_clflush(x);

#Time-consummong reading from memory
read_data_from_memory (x)

# Instruction independant of memory read
datal = datal + 5;

# Instruction dependant of memory read

data2 = x + data2;

Figure 6: Explanation out-of-order execution

In the context of this code example, if a memory read operation takes an extended time, per-
haps due to data eviction from the cache, the processor may speculatively execute subsequent
instructions during this waiting period, preemptively anticipating the value of the memory to
be read. If the speculation is accurate, the program proceeds normally. However, in the event of
a failed memory read, the processor must roll back all actions undertaken during speculation
and revert to the previous state, ensuring no residual effects.

While it’s common practice to mitigate the effects of speculative execution on registers and
main memory to prevent speculative results from altering the program’s state, the challenge
lies in addressing the effects of speculation stored in the processor’s cache. Unlike registers
and main memory, changes made to the cache are not easily undone, creating a potential vul-
nerability. Attackers can exploit this by employing techniques like flush and reload” to access
speculative results stored in the cache, even if the speculation is ultimately cancelled. Conse-
quently, sensitive data can be retrieved by attackers, even if it’s never actually utilized within
the program.



Research Project Cache attack

M 2.4 Gather instruction

Gather instructions are a powerful feature in modern CPUs, introduced with the AVX exten-
sions. They enable efficient loading of data from non-contiguous memory locations into a single
vector register, optimizing tasks that involve scattered data processing. While these instructions
enhance performance for specific computational tasks, they also introduce vulnerabilities that
can be exploited in attacks such as Downfall.

These instructions are extensively used in domains that involve processing large amounts
of data efficiently. They significantly reduce the overhead associated with traditional sequen-
tial access methods by allowing multiple data elements from different memory locations to be
loaded simultaneously into a single vector register. This is useful for applications requiring effi-
cient data processing, such as cryptography, databases, Al inference, and other fields involving
large-scale data manipulation. Gather instructions help achieve high performance by minimiz-
ing memory access latencies and reducing the need for multiple memory access instructions.

To understand how gather instructions work, let’s consider an example where they are used
to load double-word (dword) data from memory into a vector register. Here’s a breakdown of

the components involved:

e MASK: A vector register that controls which elements should be loaded from memory

and which should be ignored.
e BASE: The base register containing the starting memory address for data loading.

e INDEX: A vector register containing offsets relative to the base address for each element
to be loaded.

e 1: Index scale, indicating that moves in the index register are multiplied by 1
e RESULT: The destination vector register where the gathered data will be stored.

Consider the following gather instruction:

vpgatherdd 0(%ri13, %zmmi, 1), %zmm5%k1

Figure 7: Gather instruction

Here’s a breakdown of this instruction:

e 0: Base offset, here it is 0.
e %r13: Base register containing the starting memory address.

e %zmml: Index register containing offsets relative to the base address for each element to
be loaded.

e 1: Scale factor, multiplying the values in %zmm]1 by 1.



Research Project Cache attack

e %zmmb: The destination register where the gathered data will be stored.

e %Kkl: Mask register that controls which elements should be loaded from memory. A bit
set to 1 in the mask register means the corresponding element will be loaded; a bit set to
0 means the element will be ignored, and the current value in the destination register will

be retained.

For each element to be loaded, the memory address is calculated as follows:

Address = BASE + (INDEX x SCALE) + OFFSET

In this case, the address of each element is calculated by adding the values of the base register
(%r13) with the values of the index register (%zmm1) multiplied by the scale (1), plus the offset

(0).

Now comes the attack introduced in the paper, which is Gather Data Sampling (GDS).

M 3.1 Gather instruction leaks

To understand this attack, we must turn to the gather instruction which, with no optimization
whatsoever, is pretty slow. This comes from the fact that gather fetch some scattered memory,
and these fetch relies on the disk which cannot really be sped up short of changing the disk
itself. To speed up the execution of that instruction, the engineers at Intel thought of multiple

optimization to improve the execution :
e Only fetch the data at the indexes which has been masked through the masking vector
o If the disk allows it, make multiple memory read in parallel
e Store partial result of a gather execution and reuse it if needed

This last bullet point implies the use of a buffer to store the partial execution. The vulner-
ability that GDS will exploit lies in this buffer being shared across processes running on the
same core. Moreover, these buffers aren’t wiped out between context switch of processes. The
consequences of that is that if we somehow may read what’s in that buffer, we can steal some
data read by another process.

Here comes the heart of the attack : when executing the gather instruction in speculative
execution, the instruction will not do any check and will output some part of the shared buffer.
Let’s exploit all of that in detail.

Note that, while gather can leak some data from the shared buffer, there is a long list of vec-
torial instructions that uses the buffer. So any process that uses instructions from the following

list can have some data stolen



Research Project

Instruction buckets:
(v)(vu)(u)comi*{8}
(v)(vp)maskmov*{4}
(v)(vp)compress* {4}
(v)scale* {4}
(V)sqrt*{6}
(v)getmant™® {4}
(vp)rol*{4)
(v)(vp)andn*{5}
(vp)lzent*{2}
(v)dbpsadbw {1}
sha*{6}

(V)evt®{ 74}
(v)(vp)(phadd*{10}
(v)phmin*{2}
(v)div*{4)}
(v)(vp)(p)test*{12}
(Vrep*{7}

(v)range* {4}
(v)addsub*{2}
(vp)conflict*{2}
(vp)dpbus*{2}
fxsave/fxrstor*{3}
(V)(vp)unpck*{12}
(vp)shl*{6}
(vp)shr*{6}

(V)(vp)(p)blend*{19}
(v)insert*{12}
(V)(vp)(p)mov* {47}
(v)(vp)gather*{8}
W)(vp)(p)shuf*{17
(Vfixup*{4}
(v)(vp)xor*{5}
(v)pack*{4}
(v)(vp)and*{5}
(v)lddqu{1}
(vp)sadbw{1}
(vp)madd*{4}
(v)dpp*{4}
(vp)(p)abs*{7}
(V)(vp)min* {12}

(v)(vp)broadcast*{17}

(vp)multishift{1}
(v)round*{8}
(V)(vp)expand*{6}
(V)(vp)add*{ 12}
(vp)(p)sll#{9}
rep(ne) mov*{8}
(vV)(vp)(p)hsub*{10}
(v)fnm* {24}
(vp)2intersect™{2}
(vplavg*{2}

(V(vp)(p)emp*{217}
(v)(vp)(p)align*{4}
(v)perm*{22}
(v)(vp)max*{12}
(V)rsqrt*{7}
(v)fpclass*{10}
(v)(vplor*{5}
(vp)(p)srl*{10}
(v)getexp*{4}
(vp)dpwssd*{2}
(v)rndscale* {4}
(vp)ror*¥{4}
(V)gf2p8*{6}
(vp)(p)clmul*{7}
(v)popent*{4}
(v)fm* {36}
(v)(vp)(p)mul*{13}
(v)reduce*{4}
(vp)ternlog*{2}
(v)(vplsub*{12}
(vp)(plsra*{8)
xsave/xrstor* {2}
(vp)sign*{3}
(vp)(p)ins*{6}
(v)mpsad*{2}
(v)aes™{12}

Figure 8: List of instruction affected by the GDS attack

H 3.2 GDS in 4 steps

We’ll now explain in detail how to use Gather Data Sampling and walk through the 4 steps.

// Step (i): Increase the transient window

lea addresses_normal,
clflush (%rdi)

mov (%rdi), %rax

Y%rdi

// Step (ii): Gather uncacheable memory

lea addresses_uncacheable, %ri3
mov $0b1111111111111111, Y%rdi

kmovq %rdi, %kl

vpxord %zmml, %zmml, %zmml

vmovups (%rsi), %zmml

vpgatherdd 0(%r13, %zmmi, 1), %zmm5%k1

//set address
//set mask

//set indexes

//gather

// Step (iii): Encode (transient) data to cache

movq %xmmb5, %rax

encode_eax

// Step (iv): Scan the cache

scan_flush_reload

Figure 9: Attacker code executing Gather Data Sampling in assembly.

10

Cache attack



Research Project Cache attack

A 3.2.1 Step (i) : Enter in speculative execution

First off, we must enter in speculative execution. There are multiple ways to do so, but the easiest
is to simply trigger a cache miss. Once a cache miss occurs, The execution needs to go fetch some
data in memory, put it in the cache and then use the data. This takes some considerable time
and to increase the execution speed, the processor enter in speculative execution mode while
the cache miss is resolved.

In order to trigger the cache miss, we will flush some data from the cache (in the figure 9,
the data is at the address stored in rdi), then load back the data that has just been flushed into
a register (in the figure 9, by doing a mov of the previous data into rax).

Once that’s done, we are executing in speculative execution and we are ready to move on to

step 2.

A 3.2.2 Step (ii): Gather uncacheable memory

Now it is a matter of actually getting the data. In speculative execution, if we use gather at an
uncachable memory, say at address 0x0, we will be getting some of the data contained in the
afordescribed shared buffer.

In the figure 9, we setup our registers like so

o Fill the register kI with 1s so that every indexes are masked and we gather as much data

as possible

e Fill the zmm1 vectorial register with indexes found in the array at address stored in rsi
(which is an argument passed). Since we gather double words (4 bytes), this array will
contain indexes in {0, 4, §, ...} and it will contain 8 indexes (considering gatherdd can only

gather 8 double words)

e Choose an uncacheable address at which we will gather and putitinr13. Any uncacheable
address will do because, by the nature of being non cacheable and currently executing
speculatively, the check to whether that address is valid will be bypassed. So here, we'll
gather at Ox0

By the end of the execution of gather, we’ll have transient data in zmmb5 corresponding to

some entries in the shared buffer.

A 3.2.3 Step (iii) & (iv): Encode transient data to cache & scan the cache

Now all that’s left to do is write the data we’ve just recently uncovered from the shared buffer
and putitin the cache. We do this before we're caught up by the resolution of the cache miss that
will eject us from speculative execution (with cause, since when we exit speculative execution
in our case, the registers will be reverted to their original values and we’ll lose the data gathered
from the shared buffer). Note that, when exiting speculative execution, the data in the cache is
not reverted (as it would take as much time if not more than resolving a cache miss), henceforth

the reson to store the data in the cache.

11



Research Project Cache attack

Finally, all that’s left is using the Flush+Reload technique in order to read the data in the
cache. Which we’ll cover in the next section.

¢ 4 Cache Encoding and Analysis

M 4.1 Cache Encoding

Once we have launched the gather instruction in speculative execution. We have to deal with the
result of the temporal shared buffer returned of the destination AVX register (in our example,
a ymm one). We are still in speculative execution but we need now to get throught a vectorial
register to an encoded value in the cache.

Let’s consider here that we want to encode 8 bytes of the ymm register. We first need to
extract the first 8 bytes like figure 10. To do so we extract from ymm to xmm 16 bytes. Then from

xmm to rax 8 bytes. We use vextractil28 to extract from ymm to xmm and pextrq for the case of

xmm to rax.
255 127 0
ymm
L J
w vextracti128
127 63 0
xmm ¥
%,_J pextrqg
63 0
/
extracted rax &

Figure 10: Extraction of 8 bytes from ymm register

Now we have the data we want to encode in the rax register (always in speculative). We
need now to split the rax register. Each byte (character) of rax will be sent into other general
purpose register like rbx, rcx... (figure 11). The idea behind it is to use each of these bytes as an
index to a big ORACLE array.

RAX

' ‘e’ T T ‘o' y' o' U
R11 R10 R9 Rs& RDX RCX RBX

RAX

Figure 11: Extraction each byte of rax to use them as indexes

12



Research Project Cache attack

The ORACLE array is created to encode the rax characters as index and when the speculative
execution is done, take back the control flow after the segmentation fault (due to the incorrect
memory in the gather instruction executed speculatively), and use the Flush and Reload tech-
nique to find out what was the character used as indexes.

We need to understand why the ORACLE needs to be that big and why we multiply the
characters by 4096 when we use them as indexed by considering 4096 the size of a page in
our system. To encode properly a value in the cache we need to be sure that there will be no
collision between two different values. By collision I mean two different characters will affect
two different cache entries. We know that our system use 4096 bytes sized pages (figure 12).
We also know that one cache entry concerns one page. With these affirmations we can know

see where we are going.

Virtual Address

63 11 0

page number offset

Figure 12: Virtual Address in a system with 4096 bytes sized pages

For one character that we want to dump, we will use an array of size 4096 x 256. 256 corre-
sponds to all the value possible for a character and 4096 will be the constant multiplication to
ensure that we only use one entry cache for one index of the array.

Since we want to encode 8 characters, our ORACLE array will be of size 4096 x 256 x 8 (figure
13). Just before encoding the characters. We have to make sure that the cache is flushed to only
have the page corresponding to the character (used as index) in the cache.

13



Research Project Cache attack

ORACLE ARRAY

4096 bytes

——

BYTES EXTRACTED 3 X

CACHE

256 entries

-l
[=lol=<fof-]-[=]=]

Figure 13: Example of encoded characters into an ORACLE array. 'h’ is used as index x4096 so
its concerned page will be loaded into the cache (we are not interested about its content). We
load ORACLE +4096 x 256 x 0 +" k' x 4096

W 4.2 Cache analysis

Once all the speculative instructions are done and thus the segmentation fault occured. We
managed to take the control back by using the signal function on the SEGFAULT signal and also
used the sys/setjmp.h library to save the context and jump back to it when the process segfault.

When we take back the control on the program in the code. We have to be aware that every-
thing we did in 4.1 is discarded because it was speculative and generated an error. Everything...
except the cache (as we saw it the Spectre part). Then all we have to do now is to analyse each
part of the ORACLE array of the conerned bytes by using Flush and Reload. With i the possible

value of the character used as index, and c the current character we are trying to find:
Vi € [0,255],Vc € [0,7]  flushreload(ORACLE + i x 4096 + ¢ x 256 x 4096) (1)

If the Flush and Reload pass, it means the character ¢ was encoded speculatively before 4.1
and we recovered it.

14



Research Project Cache attack

for (size_t ¢ = 0; ¢ < 8; c++) {
bool fr_ok = true;

for (size_t i = 0; i < 256; i++) {

int mix_i i;
if (fr_ok && flush_reload((uint8_t*)&0ORACLE + (mix_i + (c * 256))
* 4096)) {

indexes[c] = (mix_i + (c * 256)) % 256;

fr_ok = false;

Figure 14: ORACLE analysis after the speculative part, when flush and reload works, we store
the index in indexes, that will contain all the characters we dumped in the temporal shared
buffer.

Now that we have a better understanding on how the GDS works, we’ll briefly showcase our
results.

First, we’ve remade the downfall attack by simply spying on a program that was using one
of the instructions that uses the shared buffer. We were trying to read a string that was used by
some of the vulnerable instructions from another process that is running on the same core. We
can read, just like in the paper, about 8 bytes of contiguous data and this on multiple part of the
string. Moreover, the noise we were able to read was also some information on other process.
Some of them were ASCII and we could read them (path, mysql, gnu...).

Although this works really well, we cannot read all of the part of the string. We’ve tinkered
with the program to read 16 bytes at a time (each of the 8 bytes are contiguous), and we’ve
uncovered more of the string but still, we cannot read the string in its entirety and even less
figure out which part of the string each 8 bytes belonged to.

Next, we thought we could uncover an AES key from our own implementation of a program
that would continuously encrypt and decrypt. We’ve done the AES program and tried to use
our attacker on it. We could read the two parts of the key, but we also could read a lot of other
data (let’s call it noise). The problem is that this noise comes much more or as frequently than
the parts of the keys, so we’ve no real way to distinguish between the keys and the noise.

Note that in the POC, the researcher is able to uncover a key by using openssl as its victim,
but looking at the code, we’ve not much idea as of why this works. It’s also important to note
that the POC’s attacker does not work on our implementation of AES.

One last bullet point is that we manage to run GDS if the victim and the attacker are on the
same CPU core, but this doesn’t work if the programs are on different cores. We think that there

is one shared buffer per core. However, the AES POC shows the attack on different cores and

15



Research Project Cache attack

somehow works and we do not really understand how our program are really different.

4 References

[1] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Ste-
fan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre. IEEE, 2018.
https://ieeexplore.ieee.org/abstract/document/8835233.

[2] Daniel Moghimi. Downfall: Exploiting speculative data gathering. Usenix, 2023. https:

//www.usenix.org/conference/usenixsecurity23/presentation/moghimi.

[3] Daniel Moghimi. Single instruction multiple data leaks in cutting-edge cpus, aka downfall.
Blackhat, 2023. https://www.youtube.com/watch?v=JLHh_oViX18&t=1049s.

[4] Yuval Yarom and Katrina Falkner. Flush+reload. Usenix, 2018. https://www.usenix.org/

system/files/conference/usenixsecurityl4/secl4-paper-yarom.pdf.

16


https://ieeexplore.ieee.org/abstract/document/8835233
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://www.youtube.com/watch?v=JLHh_oViXl8&t=1049s
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf

	Introduction
	Necessary to understand GDS
	What is a Cache?
	Flush+Reload
	Spectre
	Gather instruction

	Gather data sampling
	Gather instruction leaks
	GDS in 4 steps
	Step (i) : Enter in speculative execution
	Step (ii): Gather uncacheable memory
	Step (iii) & (iv): Encode transient data to cache & scan the cache


	Cache Encoding and Analysis
	Cache Encoding
	Cache analysis

	Our results

